extension | φ:Q→Aut N | d | ρ | Label | ID |
(C3×C6).1C22 = S3×Dic3 | φ: C22/C1 → C22 ⊆ Aut C3×C6 | 24 | 4- | (C3xC6).1C2^2 | 72,20 |
(C3×C6).2C22 = C6.D6 | φ: C22/C1 → C22 ⊆ Aut C3×C6 | 12 | 4+ | (C3xC6).2C2^2 | 72,21 |
(C3×C6).3C22 = D6⋊S3 | φ: C22/C1 → C22 ⊆ Aut C3×C6 | 24 | 4- | (C3xC6).3C2^2 | 72,22 |
(C3×C6).4C22 = C3⋊D12 | φ: C22/C1 → C22 ⊆ Aut C3×C6 | 12 | 4+ | (C3xC6).4C2^2 | 72,23 |
(C3×C6).5C22 = C32⋊2Q8 | φ: C22/C1 → C22 ⊆ Aut C3×C6 | 24 | 4- | (C3xC6).5C2^2 | 72,24 |
(C3×C6).6C22 = C3×Dic6 | φ: C22/C2 → C2 ⊆ Aut C3×C6 | 24 | 2 | (C3xC6).6C2^2 | 72,26 |
(C3×C6).7C22 = S3×C12 | φ: C22/C2 → C2 ⊆ Aut C3×C6 | 24 | 2 | (C3xC6).7C2^2 | 72,27 |
(C3×C6).8C22 = C3×D12 | φ: C22/C2 → C2 ⊆ Aut C3×C6 | 24 | 2 | (C3xC6).8C2^2 | 72,28 |
(C3×C6).9C22 = C6×Dic3 | φ: C22/C2 → C2 ⊆ Aut C3×C6 | 24 | | (C3xC6).9C2^2 | 72,29 |
(C3×C6).10C22 = C3×C3⋊D4 | φ: C22/C2 → C2 ⊆ Aut C3×C6 | 12 | 2 | (C3xC6).10C2^2 | 72,30 |
(C3×C6).11C22 = C32⋊4Q8 | φ: C22/C2 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).11C2^2 | 72,31 |
(C3×C6).12C22 = C4×C3⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C6 | 36 | | (C3xC6).12C2^2 | 72,32 |
(C3×C6).13C22 = C12⋊S3 | φ: C22/C2 → C2 ⊆ Aut C3×C6 | 36 | | (C3xC6).13C2^2 | 72,33 |
(C3×C6).14C22 = C2×C3⋊Dic3 | φ: C22/C2 → C2 ⊆ Aut C3×C6 | 72 | | (C3xC6).14C2^2 | 72,34 |
(C3×C6).15C22 = C32⋊7D4 | φ: C22/C2 → C2 ⊆ Aut C3×C6 | 36 | | (C3xC6).15C2^2 | 72,35 |
(C3×C6).16C22 = D4×C32 | central extension (φ=1) | 36 | | (C3xC6).16C2^2 | 72,37 |
(C3×C6).17C22 = Q8×C32 | central extension (φ=1) | 72 | | (C3xC6).17C2^2 | 72,38 |